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Single-molecule spectroscopy can monitor transitions between two microscopic states when these
transitions are associated with the emission of photons. A general formalism is developed for
obtaining the statistics of such transitions from a microscopic model when the dynamics is described
by master or rate equations or their continuum analog, multidimensional reaction-diffusion
equations. The focus is on the distribution of the number of transitions during a fixed observation
time, the distribution of times between transitions, and the corresponding correlation functions. It is
shown how these quantities are related to each other and how they can be explicitly calculated in a
straightforward way for both immobile and diffusing molecules. Our formalism reduces to renewal
theory when the monitored transitions either go to or originate from a single state. The influence of
dynamics slow compared with the time between monitored transitions is treated in a simple way,
and the probability distributions are expressed in terms of Mandel-type formulas. The formalism is
illustrated by a detailed analysis of the statistics of catalytic turnovers of enzymes. When the rates
of conformational changes are slower than the catalytic rates which are in turn slower than the
binding relaxation rate, �1� the mean number of turnovers is shown to have the classical
Michaelis-Menten form, �2� the correlation function of the number of turnovers is a direct measure
of the time scale of catalytic rate fluctuations, and �3� the distribution of the time between
consecutive turnovers is determined by the steady-state distribution. �DOI: 10.1063/1.2180770�
I. INTRODUCTION

Single-molecule spectroscopy can monitor conforma-
tional changes of a macromolecule containing fluorophores
whose photophysics is directly influenced by such changes,
e.g., Förster resonance energy transfer �FRET� and
quenching.1–23 In addition, it can be used to study the influ-
ence of conformational changes on the kinetics of chemical
reactions such as enzyme catalysis when one of the interme-
diates fluoresces.24–33 In both cases the experimental output
is a photon trajectory which contains information about the
nature and time scale of the underlying conformational
changes. New kinds of experiments require new kinds of
theories to analyze them.34–67 Classically, the emission of a
photon is associated with a kinetic transition between two
states and can be described by the rate equations of chemical
kinetics. To analyze experiments, one must be able to de-
scribe the statistics of such transitions within the framework
of a microscopic model of the dynamics. The purpose of this
paper is to develop a general framework for doing this, one
that unifies and extends previous work on this problem in-
cluding our own.63,65

Various kinetic schemes that schematically describe the
experiments of interest are shown in Fig. 1. Figure 1�a� de-
scribes a system with a fluorophore �D� that is excited by a
continuous laser beam with rate k1=k1

0I, where I is the laser
intensity. The excited state �D* � can decay by emitting a
photon �with rate kD� or nonradiatively with the rate kNR�r�
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that can depend on the distance r between the fluorophore
and a quencher such as tryptophan. The monitored events,
i.e., photons, are coincident with the radiative transition in
the scheme �the red arrow�. The statistics of this transition
depends on conformational dynamics. Figure 1�b� describes
triplet blinking where an excited fluorophore can go �with
intersystem crossing rate kISC� into a long lived “dark” triplet
state �T�. As in the previous case, emitted photons are moni-
tored �the red arrow�. Figure 1�c� describes Förster resonance
energy transfer between a donor-acceptor pair �DA�. The rate
of energy transfer, kTR�r�, depends on the donor-acceptor dis-
tance r, and hence the statistics of donor and acceptor pho-
tons reflects the dynamics of this distance. There are two
kinds of monitored events here, i.e., the donor and acceptor
photons, which are associated with the transitions denoted by
the green and red arrows.

Figure 1�d� describes recent experiments monitoring en-
zymatic turnovers.31,32 An enzyme E binds a substrate with
rate k1. The substrate is in great excess so that its concentra-
tion �S� does not depend on time and k1=k1

0�S�. The enzyme-
substrate complex ES can dissociate with rate k−1 or form a
product with a catalytic rate k2�r� that can be dependent on
some generalized conformational coordinate r of the en-
zyme. The product �EP� can be excited with rate kI, and the
photons emitted by the fluorescent product �EP* � are de-
tected. Each catalytic step �i.e., the formation of the product�
is followed by a burst of photons. This kinetic scheme as-
sumes that when the product dissociates from the enzyme, it

diffuses away so rapidly that photons from free product mol-
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ecules can be ignored. The monitored events can be the pho-
tons associated with the transition from EP* to EP �the red
arrow in Fig. 1�d��. Alternatively, since the catalytic step
virtually coincides with a jump in fluorescence intensity, one
can directly monitor each turnover event. The data can then
be interpreted using the kinetic scheme in Fig. 1�e�, where
now the monitored events �the fluorescence jumps� are asso-
ciated with the catalytic transition �the red arrow�. If the
dissociation of the enzyme-product complex is much faster
than the binding and catalytic rates, the kinetic scheme in
Fig. 1�e� reduces to that shown in Fig. 1�f�. Note that the
kinetic schemes corresponding to FRET, Fig. 1�c�, triplet
blinking �Fig. 1�b��, and enzymatic reaction �Fig. 1�e�� are
essentially the same �e.g., energy transfer, intersystem cross-
ing and product formation are analogous�, but the monitored
transitions are different. In the limit of fast product dissocia-
tion, there is a one-to-one formal correspondence between
fluorescence quenching �Fig. 1�a�� and enzyme kinetics �Fig.
1�f��: excitation corresponds to substrate binding, radiative
decay to catalysis, nonradiative decay to substrate dissocia-

FIG. 1. �Color� Kinetic schemes for fluorescent systems and enzymatic reac
�a� Fluorescence quenching, �b� triplet blinking, and �c� Förster resonance e
and acceptor �red arrow� photons can be monitored. �d� Enzymatic reaction:
jumps in fluorescent intensity are monitored. �f� Enzymatic reaction when th
enzyme-substrate conformations.
tion, and substrate concentration to light intensity.
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The kinetic schemes in Figs. 1�a�–1�f� involve rate con-
stants that may depend on a fluctuating conformational coor-
dinate r. Kinetic schemes that describe conformational dy-
namics contain several interconverting copies of these simple
schemes. The monitored events are now associated with sev-
eral transitions �one for each conformation�. Figure 1�g�
shows how Fig. 1�f� is modified when the enzyme and the
enzyme-substrate complex can exist in two conformations.
The catalytic transitions ES1→E1 and ES2→E2 �the red ar-
rows in Fig. 1�g�� are experimentally indistinguishable and
constitute the same event.

In this paper we consider the analysis of a time series or
trajectory of events �see Fig. 2�a��. Each event marks the
time when a particular transition out of a class of experimen-
tally indistinguishable transitions has occurred. The data can
be processed in a number of ways. The simplest procedure
�which is commonly used in FRET studies but not in single-
molecule enzyme kinetics� is to divide the trajectory into
equal bins of duration T �see Fig. 2�a�� and then calculate the
probability distribution of observing N events in a bin,

under steady-state conditions. The colored transitions are being monitored.
transfer. Two kinds of transitions associated with the donor �green arrow�

hotons from a fluorescent product are monitored; �e� enzymatic reaction: the
ociation of the product is fast. �g� Enzymatic reaction with two enzyme and
tions
nergy
the p
e diss
P�N �T�. If the time intervals are chosen small enough so that
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at most only one event occurs in each bin, one can obtain the
time dependence of the correlation function of the number of
transitions. For fluorescence experiments, this is related to
the familiar intensity correlation function.

Alternatively, one can focus on the time intervals be-
tween consecutive monitored transitions �see Fig. 2�b�� and
plot the time intervals versus the occurrence number �Fig.
2�c��. The analog of the correlation function of the number of
transitions in this representation is the correlation function of
the time between consecutive events, which was introduced
into single-molecule spectroscopy in the classic paper of Lu
et al.25 and theoretically analyzed by Cao.44 What is the ana-
log of P�N �T� in this representation? Instead of binning time,
we bin the occurrence numbers. Instead of summing events
in a bin, we sum the time intervals �see Figs. 2�c� and 2�d��.
Hence, the analog of P�N �T� is P�� ���, the distribution of
the time � between the ith and �i+�+1�th events, �
=0,1 ,2 , . . .. Thus P�� �0� is the distribution of the time inter-
vals between consecutive events �or the waiting time distri-
bution�. P�� �1� is the distribution of the sum of two consecu-
tive times, a function recently introduced by Flomenbom
et al.62

In Sec. II of this paper we present a formalism for cal-
culating the statistics of the monitored transitions for a given
kinetic scheme. Our focus is on the distribution of the num-
ber of the monitored transitions in a bin, the distribution of
the times between transitions, and the corresponding corre-
lation functions. We will obtain a number of interesting iden-
tities that relate these quantities. In Sec. III our formalism is
shown to reduce to renewal theory when the monitored tran-
sitions either go to or come from a single state. Section IV
shows that when there is a separation of time scales, the
dimensionality of the system can be reduced, and one needs
to consider only slow transitions between rapidly intercon-
verting subsystems. As a nontrivial example of this, we con-

FIG. 2. Processing of event trajectories. �a� The time trajectory divided into
bins of equal size T. The distribution of the number of events in a bin,
P�N �T�, is analyzed. �b� Alternatively, the times between consecutive events
can be analyzed. �c� The times between consecutive events plotted as a
function of the event number. �d� The event trajectory is binned by grouping
�+1 �here �=2� time intervals, and the distribution of the sum of the �’s in
each bin, P�� ���, is analyzed.
sider the diffusion of fluorescent molecules through the laser
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spot in Sec. V. A detailed application of our formalism to
enzymatic reactions is presented in Sec. VI. The focus here is
on the information content of various distributions and cor-
relation functions and their dependence on the substrate con-
centration. Finally, in Sec. VII we briefly indicate how our
formalism can be readily generalized to treat several differ-
ent kinds of events that correspond to different classes of
transitions.

II. STATISTICS OF TRANSITIONS

Suppose that the dynamics of the system of interest can
be described by a multistate kinetic scheme. The detected
events �i.e., photons, enzyme turnovers, etc.� are associated
with one or more transitions in this scheme �e.g., the transi-
tions denoted by the red arrows in Fig. 1�. We are interested
in the statistics of these monitored transitions, namely, the
probability of the number of transitions during a time inter-
val, the distribution of the time between transitions, and the
corresponding correlation functions.

The dynamics of the system is described by a set of rate
equations. Let K be the rate matrix that describes all transi-
tions, including conformational changes. Its element Kij is
the rate constant of the j→ i transition and Kii=−� j�iKji �or
in matrix notation 1†K=0 where 1 is the unit vector and †
denotes transpose�. The probability Gij

0 �t� that the system is
in state i at time t, provided it was in state j initially, is found
from the rate equations of chemical kinetics which in matrix
notation can be written as

d

dt
G0 = KG0, �2.1�

with G0�0�=I, where I is the unity matrix. The formal solu-
tion of this equation is a matrix exponential, G0�t�
=exp�Kt�. At long times, the probability Gij

0 �t� approaches its
steady-state value, pss�i�. The normalized vector of steady-
state probabilities pss satisfies

Kpss = 0, 1†pss = 1. �2.2�

To obtain the statistics of transitions, one must first find
the probability that no monitored transitions occur in a time
interval. This probability can be calculated by making the
monitored transitions irreversible.42,51,63 Let Gij�t� be the
probability of going from state j to state i in time t without
making a monitored transition. The matrix of these probabili-
ties, G�t�, satisfies63,65

d

dt
G = �K − V�G , �2.3�

with G�0�=I. Here V is the matrix of the monitored transi-
tion rate constants. It is constructed by setting all the ele-
ments of K equal to zero except those off-diagonal ones that
correspond to monitored transitions. For example, if we are
monitoring only the m→m� transition, then V has the only
nonzero element Vm�m=Km�m.

In the case of the two-state system in Fig. 1�a�, the ma-
*
trix K in the basis �D ,D � is
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K = �− k1 kNR + kD

k1 − �kNR + kD�
� . �2.4�

The only nonzero element of V is the off-diagonal element
of K that corresponds to the radiative transition,

V = �0 kD

0 0
� . �2.5�

Other examples are given in Sec. VI.
As shown below, all the distributions and correlation

functions discussed in the Introduction can be expressed in
terms of the matrices G0, G, and V.

A. Distribution of the number N of transitions during
time T, P„N 	T…

First, consider the probability Pij�N �T� that N monitored
transitions occurred in a time interval �bin� T, given that the
system was in state j in the beginning of the interval and in
state i at the end. When N=0 this is the probability that no
monitored transitions occurred, Pij�0 �T�=Gij�T�. To calcu-
late the probability that one transition occurred during time
T, first suppose that there is only one monitored transition
m→m� with rate constant Km�m. The probability that during
time T the one and only m→m� transition occurred during
the time interval �t , t+dt� is equal to the product of the prob-
abilities that �1� the system started at state j and went to state
m in time t without making an m→m� transition, Gmj�t�, �2�
the m→m� transition occurred in the time interval �t , t+dt�,
Km�mdt, and �3� the system went from m� to the final state i
without making a monitored transition, Gim��T− t�. Integrat-
ing over all intermediate times t we get

Pij�1�T� = 

0

T

Gim��T − t�Km�mGmj�t�dt . �2.6�

Since the only nonzero element of V is Km�m, this can be
written in matrix notation as

P�1�T� = 

0

T

G�T − t�VG�t�dt � G � VG , �2.7�

where � means convolution �f �g=�0
t f�t− t��g�t��dt��.

When different transitions lead to the same event �e.g.,
both m1→m1� and m2→m2� transitions yield photons of the
same color�, Eq. �2.6� should be summed over all monitored
transitions. This leads to Eq. �2.7�, where V now has several
nonzero elements corresponding to the transitions that are
being monitored.

The above arguments can readily be extended to treat
two, three, etc., monitored transitions in a bin, and the gen-
eralization of Eq. �2.7� to N transitions is

P�N�T� = G��VG�N, N = 0,1, . . . �2.8�

or, in Laplace space � f̂�s�=�0
�f�t�exp�−st�dt�,

P̂�N�s� = Ĝ�s��VĜ�s��N, �2.9�

where the convolution becomes a simple product.
Another way of getting the probabilities P�N �T� is to use

0 63
the perturbation expansion of G �t�. By solving Eqs. �2.1�
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and �2.3� for G0�t� and G�t� in Laplace space it is easy to

show that Ĝ0�s�= �Ĝ−1�s�−V�−1. Expanding this in powers of
V, we get

Ĝ0�s� = Ĝ�s� + Ĝ�s�VĜ�s� + Ĝ�s�VĜ�s�VĜ�s� + ¯ .

�2.10�

This equation has a simple interpretation. The total probabil-
ity that the system goes from one state to another is the sum
of the probabilities that it does so by making no �first term�,
one �second term�, two, etc., monitored transitions. Thus the

Nth term on the right hand side of Eq. �2.10� is just P̂�N �s�,
in agreement with Eq. �2.9�.

In this paper we consider the analysis of only stationary
trajectories. In this case the system is in steady state in the
beginning of a bin and in any state at the end. Summing Eq.
�2.8� over all final states and a steady-state distribution of
initial states, we obtain the probability that N monitored tran-
sitions occurred during time T in a stationary trajectory,

P�N�T� = 1†P�N�T�pss = 1†G��VG�Npss. �2.11�

When N=0 this gives the probability of no monitored tran-
sitions occurring during time T. This is equivalent to finding
the survival probability S�T� of a system with irreversible
monitored transitions, P�0 �T�=S�T��1†G�T�pss.

An important tool for obtaining and analyzing the prop-
erties of P�N �T� is its generating function

F��,T� = �
N=0

�

�NP�N�T� = 1†f�T��� . �2.12�

Here we have introduced the vector of the generating func-
tions f�T ���=�N=0

� �NP�N �T�pss. By using Eq. �2.8� for
P�N �T� it can be shown that65

d

dt
f = Kf − �1 − ��Vf ,

�2.13�
f�0��� = pss.

Formally, one can solve this equation and express the gener-
ating function as

F��,T� = 1†e�K−�1−��V�Tpss. �2.14�

Thus the generating function can be readily found by solving
Eq. �2.13�, which is similar to the conventional rate equa-
tions. The distributions P�N �T� can then be found by ex-
panding the generating function, 1†f, in powers of � �see Eq.
�2.12��.

With the generating function in hand one can readily find
the moments of the distribution. The mean number of the
transitions in a bin of size T is equal to the derivative of the
generating function at �=1, 
N�T= ��� /���F�� ,T���=1 as fol-
lows


N�T = 1†VpssT = 
n�T , �2.15�
where 
n� is the average number of transitions per unit time
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n� = 1†Vpss. �2.16�

The mean square number of the transitions in a bin is calcu-
lated analogously �
N�N−1��T= ���2 /��2�F�� ,T���=1�,


N�N − 1��T = 2

0

T

�T − t�1†VG0�t�Vpssdt . �2.17�

This can be expressed in terms of the correlation function of
the number of transitions,


n�t�n�0�� = 1†VG0�t�Vpss, �2.18�

as follows:


N�N − 1��T = 2

0

T

�T − t�
n�t�n�0��dt . �2.19�

The above expression for 
n�t�n�0�� is valid for times longer
than the bin size that was used to calculate the correlation
function from a trajectory of transitions.

When all other transitions are faster than those being
monitored, the above formalism simplifies. Using the steady-
state approximation �i.e., f i�t ���� pss�i�f�t ���� in Eq. �2.13�,
multiplying both sides by 1†, using 1†K=0, 1†pss=1, and the
expression for the average number of transitions per unit
time in Eq. �2.16�, one can show that Eq. �2.13� simplifies to

d

dt
f�t��� = − �1 − ��
n�f�t��� , �2.20�

with f�0 ���=1. The solution of this is a single exponential
and thus

�
N=0

�

�NP�N�T� = exp�− �1 − ��
n�T� . �2.21�

Expanding this generating function in powers of �, we get
the Poisson distribution

P�N�T� =
�
n�T�N

N!
e−
n�T. �2.22�

The mean is given by Eq. �2.15�, and the variance is equal to
the mean


N2�T − 
N�T
2 = 
N�T. �2.23�

It follows from Eq. �2.18� that 
n�t�n�0��= 
n�2. Thus, the
transitions are uncorrelated in the fast relaxation limit.

B. Distribution of the time � between the i and i+�+1
transitions, P„� 	�…

Next we consider the distribution of the time � between
two monitored transitions with � transitions in between. Let
us start with the distribution of the time between consecutive
transitions ��=0�. As before, assume for the moment that
there is just one monitored transition m→m�. Then the sys-
tem is always in state m� just after a monitored transition has
occurred. The probability density that the next transition oc-
curs at time � later is Km�mGmm����. This is the product of �1�

the probability that the system goes from m� to m in time �
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without making a monitored transition, Gmm����, and �2� the
probability density that m→m� transition occurs in the time
interval �� ,�+d��, Km�m.

When there are several monitored transitions, say, m�

→m�� , �=1,2 , . . ., the above result should be summed over
all these transitions. In addition, now the state of the system
in the beginning of the time interval depends on which par-
ticular transition has just occurred. Therefore the distribution
Km�mGmm���� should be weighted by the probability pin�m���
to be in the state m�� in the beginning of the time interval.
This probability is the ratio of the mean number of m�

→m�� transitions per unit time, Km
��m�

pss�m��, to the mean
number of all monitored transitions per unit time, 
n�
=��Km

��m�
pss�m��=1†Vpss.

44 Introducing the vector pin with
the components pin�i� if i=m�� and 0 otherwise, the initial
distribution in matrix notation is

pin =
Vpss

1†Vpss
, 1†pin = 1. �2.24�

The distribution of the time between consecutive transitions
can then be written as

P���0� = 1†VG���pin = 1†VG���Vpss/
n� . �2.25�

Note that this distribution is proportional to the correlation
function of V when the dynamics is irreversible �i.e., de-
scribed by the rate matrix K−V�. On the other hand, Eq.
�2.18� shows that 
n�t�n�0�� is the correlation function of V
for the system described by the rate matrix K.

The distribution of the time � between two transitions
when another transition occurred at an intermediate time t
�� is obtained in the same way as Eq. �2.7�, i.e., by multi-
plying the probabilities to be initially in state i, pin�i�, to have
no monitored transitions during t and �− t and to have tran-
sitions at t and �. Integrating over all intermediate times t, we
get

P���1� = 1†VG � VGpin. �2.26�

Similarly, it follows that the distribution of the time between
two monitored transitions with � transitions in between is

P����� = 1†VG��VG��pin = 1†VP�����pin,

� = 0,1, . . . , �2.27�

where P�N �T� is defined in Eq. �2.8�. This expression is
analogous to P�N �T� � Eq. �2.11�� but with different initial
and final states because the time interval � now begins and
ends with a monitored transition.

The generating function of P�� ��� with respect to � can
be written as

F��,�� = �
�=0

�

��P����� = 1†Vg����� , �2.28�

where g�t ��� is the solution of

d

dt
g = Kg − �1 − ��Vg ,

�2.29�
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g�0��� = pin,

as can be shown using Eqs. �2.27� and �2.28�. Except for the
initial condition, this equation is the same as Eq. �2.13� for
the generating function of P�N �T�. It has the formal solution

F��,�� = 1†Ve�K−�1−��V��Vpss/1
†Vpss. �2.30�

It should be noted that F�� ,�� defined in Eq. �2.28� is an
unusual generating function because � is a parameter, not a
random variable. Consequently, we cannot use this generat-
ing function to find the moments of the distribution by sim-
ply differentiating with respect to �.

The moments of the distribution of the time between
transitions are defined as


�i�� = 

0

�

�iP�����d� = �− 1�ilim
s→0

di

dsiP̂�s��� . �2.31�

These are found in Appendix B using identities in Appendix
A. The mean time between transitions for arbitrary � is


��� = �� + 1�
��0, �2.32�

where 
��0 is the mean time between consecutive transitions


��0
−1 = 1†Vpss = 
n� . �2.33�

Thus the mean time between consecutive transitions is the
reciprocal mean number of transitions per unit time, as it
should be for a stationary trajectory.

The mean square time between transitions for arbitrary �
is �see Appendix B�


�2�� = 2
��0�
j=0

�

�� + 1 − j��irr
† � jpss. �2.34�

Here �irr�i� is the mean lifetime of state i in the irreversible
system described by the rate matrix K−V. In matrix notation
it is

�irr
† = 1†Ĝ�0� . �2.35�

�ij is the probability of escaping this irreversible system
through state i having started in state j,

� = VĜ�0� . �2.36�

By setting �=0 in Eq. �2.34� one can find the mean
square time between consecutive transitions


�2�0 = 2
��0�irr
† pss � 2
��0
�irr� , �2.37�

where 
�irr���irr
† pss is the mean lifetime of the irreversible

system.
Since �=�i=1

�+1�i, the mean square time 
�2�� can also be
expressed as


�2�� = �� + 1�
�2�0 + 2�
j=1

�

�� + 1 − j�
� j+1�1�0 �2.38�

since 
�i� j�0 depends only on �i− j�. By comparing this with
Eq. �2.34�, the correlation function of the time between con-

secutive transitions for j�1 can be obtained,
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� j+1�1�0 = 
��0�irr
† � jpss = 
��01†Ĝ�0��VĜ�0�� jpss.

�2.39�

The subscript 0 in 
� j+1�1�0 indicates that this is the correla-
tion function of the times between consecutive transitions.
Note that this result is valid only for j�1. If j is set to zero
in Eq. �2.39�, we get a result that is half of the exact one �Eq.
�2.37��. This equation has the same structure but, as to be
expected, is simpler than Cao’s result44 for the correlation
function of consecutive residence times.

The dependence of this correlation function on j is de-
termined by the eigenvalues of the matrix of escape prob-
abilities �. At least one eigenvalue always equals unity and
this determines the large j limit of the correlation function
�i.e., as j→�, 
� j+1�1�0→ 
��0

2�. The other eigenvalues vi are
less than unity and result in an exponential decay,
exp�j ln vi�.

As in Sec. II A, the formalism simplifies in the fast re-
laxation limit. In this limit the generating function of P�� ���
is also exponential,

�
�=0

�

��P����� = 
n�exp�− �1 − ��
n��� . �2.40�

Expanding this in powers of � we get that the distribution of
the time between events is the gamma distribution

P����� = 
n�
�
n����

�!
e−
n��. �2.41�

Since in the fast relaxation limit �=pin1
†, the mean square

time between transitions, Eq. �2.34�, becomes


�2�� = �� + 1��� + 2�
��0
2. �2.42�

It follows from Eq. �2.39� that in the fast relaxation limit the
times between consecutive transitions are uncorrelated, i.e.,

� j+1�1�0= 
��0

2.
Finally, we mention that Cao and co-workers44–47 con-

sidered a probability distribution that is in some sense a hy-
brid of P�N �T� and P�� ���. Specifically, they defined
Pev�N �T� as the probability of finding N transitions or events
in time T given that a transition occurred at time 0. This can
be obtained from an event trajectory by starting with each
event and counting the number of events in time interval T.
In our notation it can be expressed as

Pev�N�T� = 1†P�N�T�pin = 1†G��VG�Npin, �2.43�

where the matrix P�N �T� is defined in Eq. �2.8�. The corre-
sponding generating function is given by

Fev��,T� = �
N=0

�

�NPev�N�T� = 1†g�T��� , �2.44�

where g�t ��� is the solution of Eq. �2.29�.
An interesting property of this distribution is that its first
moment already contains dynamical information,
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N�ev = �dFev��,T�
d�

�
�=1

= 

0

T 
n�t�n�0��

n�

dt , �2.45�

where the number correlation function 
n�t�n�0�� is defined
in Eq. �2.18�. Higher moments can be expressed in terms of
multitime number correlation functions �e.g., the second mo-
ment depends on 
n�t2�n�t1�n�0���.

For the sake of completeness we note that the function
complementary to Pev�N �T� is

Pev����� = 1†VP�����pss, �2.46�

which is the probability density that from any starting point
in a steady-state trajectory, � is the time to the ��+1�th sub-
sequent event. The relation between the two “ev” distribu-
tions is simply 
��0Pev�� ���= Pev�� ���.

C. Relationship between P„N 	T… and P„� 	�…

The distributions and the correlation functions discussed
above are related to each other. Both distributions P�N �T�
�Eq. �2.11�� and P�� ��� �Eq. �2.27�� can be expressed in
terms of the matrix P�N �T� defined in Eq. �2.8�. We now
show that the generating functions of these distributions are
related by


��0�
N=0

�

�N�2P�N�T�
�T2 = �1 − ��2�

�=0

�

��P�T��� . �2.47�

To derive this equation we differentiate the expression for the
generating functions given in Eq. �2.14� twice with respect to
T: �2F�� ,T� /�T2=1†H exp�HT�Hpss, where H=K− �1
−��V. Then using 1†K=Kpss=0 and comparing the result
with the generating function for P�� ��� given in Eq. �2.30�,
Eq. �2.47� follows immediately.

By setting �=0 in Eq. �2.47� we obtain the following
relation between the distribution of the time between con-
secutive transitions, P�T �0�, and the probability that no tran-
sitions occurred during the time interval T, P�0 �T�:


��0
d2P�0�T�

dT2 = P�T�0� . �2.48�

Recall that P�0 �T�=S�T� is the survival probability of a sys-
tem where the monitored transitions were made irreversible.
Similarly, by equating the coefficients of the powers of � in
Eq. �2.47� one gets the following recursion relations:


��0
�2P�1�T�

�T2 = P�T�1� − 2P�T�0� ,


��0
�2P�N�T�

�T2 = P�T�N� − 2P�T�N − 1� + P�T�N − 2�,

N = 2,3, . . . . �2.49�

Alternatively, dividing both sides of Eq. �2.47� by �1
−��2 and then equating the coefficients of the powers of �,
we find

P����� = 
��0�
�

�� − i + 1�
�2P�i���

��2 . �2.50�

i=0
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A remarkable relationship exists between the correlation
function of the time intervals and the transition number dis-
tribution. Comparing Eq. �2.39� with the Laplace transform
of Eq. �2.11� yields


�N+1�1�0 = 
��0

0

�

P�N�T�dT, N � 1. �2.51�

There is an analogous relationship between the transition
number correlation function and the distribution of the time
between transitions. By solving Eq. �2.29� when �=1,
g�t �1�=G0�t�V / 
n�, substituting this into Eq. �2.28�, and
comparing the result with Eq. �2.18�, we get


n�t�n�0�� = 
n��
�=0

�

P�t��� . �2.52�

This concludes our presentation of the general formal-
ism.

III. RELATION TO RENEWAL THEORY

Renewal theory considers the statistics of events when
the time intervals between successive events are indepen-
dently and identically distributed.68,69 It describes, for ex-
ample, successive replacements of light bulbs: when a bulb
fails it is immediately replaced or renewed. Random vari-
ables of interest are the time of nth renewal and the number
of renewals in a time interval. Renewal theory relates the
properties of these random variables to the distribution of the
time between consecutive events. In the single-molecule
context, approaches based on renewal theory have been used
in Refs. 42, 43, and 51.

We now show that our formalism reduces to renewal
theory if the matrix of the monitored transitions, V, is sepa-
rable, namely, when it can be represented as

V = uv†, �3.1�

where u and v are column vectors. In this case all distribu-
tions can be expressed in terms of the distribution of the time
between consecutive transitions, P�� �0�,

���� � P���0� = v†G���u . �3.2�

We have introduced a special notation, ����, for P�� �0� be-
cause this quantity is the input of renewal theory.

The Laplace transform of the distribution of the time
between transitions given in Eq. �2.27� simplifies to �note
that pin=u /1†u�

P̂�s��� = ��s��+1. �3.3�

In the language of renewal theory, Eq. �3.3� is the Laplace
transform of the distribution of the time up to the �+1
renewal.68

The distribution of the number of transitions in a bin or,
equivalently, the distribution of the number of renewals in a
time interval can also be expressed in terms of the distribu-
tion ��t�. To show this we first find the generating function
of P�N �T�. By solving Eq. �2.13� in Laplace space we show

in Appendix C that for a separable V
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�
N=0

�

�NP̂�N�s� =
1

s
+

�� − 1��1 − �̂�s��

s2
��0�1 − ��̂�s��
, �3.4�

where the mean time between consecutive transitions is


��0
−1 = 1†uv†pss. �3.5�

The generating function in Eq. �3.4� is the same as that in
renewal theory �cf. Eq. �7� on p. 38 in Ref. 68�. Expanding
this generating function in a power series in �, we get the
Laplace transform of the distribution of the number of
events,

P̂�0�s� =
1

s
−

1 − �̂�s�
s2
��0

,

�3.6�

P̂�N�s� =
�̂�s�N−1�1 − �̂�s��2

s2
��0
, N = 1,2, . . . .

One can readily check �see Appendix C� that the time
intervals between consecutive events are indeed uncorrelated
when the matrix V is separable,


� j+1�1�0 = 
��0
2. �3.7�

On the other hand, the Laplace transform of the correlation
function of the number of transitions is



0

�


n�t�n�0��e−stdt =

n��̂�s�

1 − �̂�s�
. �3.8�

Thus when renewal theory is valid, the distribution of the
time between consecutive transitions, �����P�� �0�, and the
transition number correlation function, 
n�t�n�0��, are simply
related and consequently decay on the same time scale.

When is the matrix of monitored transitions separable
and renewal theory applicable? When all transitions are re-
versible and the rate constants arbitrary, the answer is that
all the monitored transitions must either go to a single state
or come from a single state. Mathematically, this means that
either the vector u or the vector v in Eq. �3.1� has a single
nonzero element. For example, the statistics of the “red”
transitions in the schemes in Figs. 1�a�–1�f� can be described
in terms of renewal theory in the absence of conformational
changes. However, renewal theory does not work for the
scheme in Fig. 1�g�. For specific values of the rate constants,
the V matrix can be separable in other special cases that
involve monitored transitions to and from many states. Op-
erationally, the simplest way to determine whether V is sepa-
rable �and thus whether the times between consecutive tran-
sitions are uncorrelated� is to perform a singular value
decomposition of V and see whether there is only one non-
zero singular value.

IV. SLOW PROCESSES: GENERALIZATION OF
MANDEL’S FORMULA

When there is a separation of time scales �e.g., slow
conformational changes and fast photophysics�, the above
formalism can be simplified. Dynamics on a time scale
shorter than the time between consecutive monitored transi-

tions results in a Poisson distribution of the number of tran-

Downloaded 28 Jun 2007 to 128.165.21.97. Redistribution subject to
sitions and a gamma distribution of the time between transi-
tions. Slow relaxation alters these distributions.

The influence of slow processes such as conformational
changes and intersystem crossing can be treated in a simple
way.65 The entire set of states is split into subsets with fast
transitions within a subset and slow transitions among the
subsets. In the fluorescence quenching example �see Fig.
1�a�� with a conformation-dependent nonradiative decay rate,
the subsets consist of the ground and excited states with the
same conformation. When the transitions between the sub-
sets are extremely slow, the distribution of the number of
monitored transitions in the ith subset is Poissonian �because
of fast intrasubset relaxation� with the mean number of the
transitions per unit time ni. The generating function in the
absence of intersubset transitions,

�
N=0

�

�NP�N�T� = 1†f , �4.1�

is found by solving

d

dt
f = − �1 − ��Nf , �4.2�

where N is a diagonal matrix with elements Nij =ni	ij. Ini-
tially, f�0 ���=peq where peq�i� is the equilibrium probability
of being in subset i.

In the presence of slow transitions among the subsets
�e.g., due to conformational dynamics�, we have shown
previously65 that Eq. �4.2� must be generalized to

d

dt
f = Lf − �1 − ��Nf , �4.3�

with the same initial conditions, f�0 ���=peq. L is the matrix
that describes slow transitions among the subsets �Lpeq=0�.
The general procedure for constructing L and N from K
and V is given in Appendix B of Ref. 65. We give two
illustrative examples of this procedure later when consider-
ing the influence of slow conformational dynamics on en-
zyme catalysis.

Note that the above equation has the same form as Eq.
�2.13� when K is identified with L and V with N. However,
the dimensionality of L and N is the number of subsets and
thus smaller than that of K and V. Moreover, the matrix N
is diagonal, in contrast to V which is completely off diago-
nal. We shall exploit this crucial difference below. Neverthe-
less, with this identification, one can immediately obtain all
quantities of interest using the formalism presented in Sec.
II.

The continuum analog of the above generating function
is

�
N=0

�

�NP�N�T� =
 f�x,T���dx , �4.4�

where x is a multidimensional slow coordinate and f�x , t ���

satisfies the continuum analog of Eq. �4.3�,
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�

�t
f = Lf − �1 − ��n�x� , �4.5�

with the initial condition f�x ,0 ���= peq�x�, where peq�x� is
the equilibrium distribution along the slow multidimensional
coordinate x. L is an operator that describes the dynamics in
the space of slow coordinates with the property that
Lpeq�x�=0. The “sink” term n�x� is the average number of
the monitored transitions per unit time at a fixed value of x.

The distribution of the number of transitions can in this
case be represented in the form of Mandel’s formula. This
formula was originally used to calculate photon statistics
when the incident light intensity fluctuates.70 To obtain an
expression for P�N �T� that is analogous to Mandel’s for-
mula, we first note that the generating function in Eq. �4.4�
can formally be written as a path integral,

�
N=0

�

�NP�N�T� = 
e−�1−���0
t n�x�t���dt�� , �4.6�

where the angular brackets denote averaging over all trajec-
tories starting from equilibrium. Expanding the right hand
side of Eq. �4.6� in powers of � and equating coefficients, we
find that P�N �T� can be written in the form of Mandel’s
formula,

P�N�T� = 

0

�

PW�W�T�
WN

N!
e−WdW , �4.7�

where we have defined

PW�W�T� =�	�W − 

0

T

n�t�dt�� . �4.8�

Using the Fourier representation of the 	 function, PW�W �T�
can be presented as

PW�W�T� =
1

2




−�

� 
 eiwWf��x,T�w�dxdw , �4.9�

where f� satisfies Eq. �4.5� with �1−�� being replaced by iw.
Equation �4.7� shows that the probability distribution of

N transitions in time T is a superposition of Poisson distri-
butions with the mean number of transitions W. Each Pois-
sonian term results from fast fluctuations in a subset with a
fixed slow variable. The distribution PW�W �T� describes
slow fluctuations of W and can be found by solving Eq. �4.5�.
When the bin size is much longer than the characteristic time
of the slow fluctuations, PW�W �T�=	�W− 
n�T� and the dis-
tribution becomes a single Poissonian with the mean 
n�T.

The same kind of reasoning can be applied to the distri-
bution of the time between the monitored transitions. The
generating function can be expressed as

�
�=0

�

��P����� =
 n�x�g�x,����dx , �4.10�

where g is the solution of Eq. �4.5� with f →g and the initial
condition g�x ,0 ���=n�x�peq�x� /�n�x�peq�x�dx. To get the
generalization of Mandel’s formula for the distribution of the

time between transitions, we use Eq. �4.7� in Eq. �2.50�,
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P����� = 
��0�
i=0

�

�� − i + 1�

0

� d2PW�W���
d�2

W�

�!
e−WdW .

�4.11�

It should be stressed that these Mandel-type formulas do
not describe the statistics of transitions in general �unlike the
formalism in Sec. II�. Their validity requires separation of
time scales. For photon counting, the time between moni-
tored transitions is usually on the microsecond time scale
because of low detection efficiency. Processes faster than this
�e.g., emission of photons and librational motion of fluoro-
phores� give rise to shot noise. Slower processes such as
intersystem crossing, translational diffusion, and certain con-
formational changes result in additional broadening of the
distributions.65

V. INFLUENCE OF TRANSLATIONAL DIFFUSION

As an interesting and nontrivial application of the for-
malism developed in the previous section, consider how the
diffusion of molecules through the laser spot influences pho-
ton statistics. Consider M fluorescent molecules diffusing in
a large volume V at concentration c=M /V. When inside the
laser spot, the fluorophore is excited and emits a photon. To
an excellent approximation we can assume that diffusion is
sufficiently slow so that the photon statistics is Poissonian
for every location in the laser spot. Then the generating func-
tion for P�N �T� can be found using Eqs. �4.4� and �4.5� by
identifying x= �R1 ,R2 , . . . ,RM�, where Ri is the position vec-
tor of the ith particle, L=D�i=1

M �i
2, where D is the transla-

tional diffusion coefficient, and n�x�=�i=1
M n�Ri� where n�Ri�

is the laser-profile-dependent average number of detected
photons emitted by molecule i. Thus Eqs. �4.4� and �4.5�
become

F��,T� = �
N=0

�

�NP�N�T� =
 fdR1dR2, . . . ,dRM , �5.1�

where

�

�t
f = �

i=1

M

�D�i
2 − �1 − ��n�Ri��f , �5.2�

with the initial condition f�T=0�=1/VM. Since this equation
is separable, we can write the generating function in terms of
a one-particle function f0�R� as

F��,T� = �
 f0�R,T���
V

dR�M

, �5.3�

where

�

�t
f0 = D�2f0 − �1 − ��n�R�f0, �5.4�

with f0�R ,0 ���=1. To take the thermodynamic limit, we first

differentiate F�� ,T� with respect to T,
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�

�T
F =

M

V
�
 �f0

�T
dR��
 f0

V
dR�M−1

. �5.5�

In the thermodynamic limit, M ,V→� and M /V→c, this
becomes

�

�T
F��,T� = − ck�T���F��,T� , �5.6�

where we have defined

k�T��� � −
 �f0

�T
dR . �5.7�

By integrating both sides of Eq. �5.4� with respect to R, it
can be shown that

k�T��� = �1 − �� 
 n�R�f0�R,T���dR . �5.8�

Finally, solving Eq. �5.6� with the initial condition F�� ,0�
=1, we find

F��,T� = �
N=0

�

�NP�N�T� = exp�− c

0

T

k�t���dt� . �5.9�

Remarkably, this generating function is identical to the
relative concentration of A in the irreversible diffusion-
influenced pseudo-first-order reaction A+B→B obtained
within the framework of the Smoluchowski approach.71 Spe-
cifically, F�� , t�= �A��t� / �A��0� when c is identified with the
concentration of B and the reaction between A and B is de-
scribed by the sink term �1−��n�R�.

The average number of detected photons is 
N�T

= ��F /����=1=cn̄T, as expected, where we have defined n̄
=�n�R�dR. The mean square number of transitions is
�
N�N−1��T= ��2F /��2��=1�


N2�T = cn̄T + c2n̄2T2 + 2cn2

0

T

�T − t�C�t�dt �5.10�

Here n2=�n�R�2dR and C�t� is the familiar intensity time
correlation function which plays a central role in fluores-
cence correlation spectroscopy,

C�t� =

 n�R�G0�R,t�R0�n�R0�dRdR0


 n�R�2dR

, �5.11�

where G0�R , t �R0�=exp�−�R−R0�2� / �4
Dt�3/2 is the free
diffusion Green’s function.

The above is a simplified version of the derivation in our
previous work65 on Förster resonance energy transfer and the
starting point for our analysis of the influence of diffusion on
photon counting histograms.66 Here we consider the statistics
of the time intervals between photons emitted by diffusing
molecules. Differentiating the generating function of P�N �T�
in Eq. �5.9� with respect to time interval T twice using Eq.
�2.47� and 
��0= 
n�−1= �cn̄�−1, we get the generating function

of the distribution of the time between photons,
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�
�=0

�

��P����� =
1

n̄�1 − ��2�−
dk�����

d�
+ ck�����2�

�exp�− c

0

�

k�t���dt� . �5.12�

Expanding the right hand side of this expression in powers of
� one can get the distribution P�� ���. By setting �=0 we
find that the distribution of the time between consecutive
photons is

P���0� =
1

n̄
�−

dk���
d�

+ ck���2�exp�− c

0

�

k�t�dt� ,

�5.13�

where k����k�� �0� is identical to the time-dependent rate
coefficient of an irreversible diffusion-influenced bimolecu-
lar reaction with a distance-dependent reactivity n�R�.

Consider this distribution in the small concentration
limit when a photon trajectory consists of bursts of photons.
Each burst is produced by a single molecule; different bursts
of photons come from different molecules. The bursts are
separated by a time which is much longer than the burst size.
In this case the term dk��� /d� in Eq. �5.13� is dominant at
short times, while the exponential term is dominant at long
times. Replacing k��� by its steady-state value, k�

=lim�→�k���, Eq. �5.3� can be approximated by

P���0� � �1 − pb�
1

k� − n̄

dk���
d�

+ pbck� exp�− ck��� ,

�5.14�

where we have defined pb�k� / n̄. This distribution has a
simple interpretation. The second term describes the distri-
bution of the time between photons in different bursts. The
factor ck� exp�−ck��� is the normalized distribution of the
time between the bursts with the mean time between the
bursts equal to 1/ck�. pb=k� / n̄ is the probability that the two
consecutive photons belong to different bursts since ck� is
the mean number of bursts per unit time and cn̄ is the mean
number of photons per unit time. The first term in Eq. �5.14�
describes the distribution of the time between photons in the
same burst. It is weighted with the probability that the two
consecutive photons are in the same burst, 1− pb. The distri-
bution of the time between photons emitted by a single mol-
ecule, �k�− n̄�−1dk��� /d�, is normalized, but its moments are
divergent. This is because a molecule may diffuse away and
then return to the spot, resulting in long time intervals be-
tween the photons emitted by this particular molecule. How-
ever, other molecules can diffuse into the laser spot, resulting
in an effective cutoff �the exponential factor in Eq. �5.13�� of
the long time tail of the single burst distribution so that the
moments are actually finite but concentration dependent.

VI. APPLICATION TO ENZYME CATALYSIS

The most natural application of our formalism is in pho-
ton counting �see Figs. 1�a�–1�c��. Our previous work on the
theory of single-molecule Förster energy transfer65 antici-

pated certain aspects of this formalism but was complicated
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by the fact that the focus was on the statistical properties of
the energy transfer efficiency. To highlight the utility of our
formalism in other contexts, in this section we consider in
detail the statistics of the catalytic transitions in enzyme ki-
netics �see Figs. 1�d�–1�g��. Our interest in this problem was
sparked by the recent single-molecule experiments of Velo-
nia et al.31 and English et al.32 In these experiments, a single
enzyme attached to a surface is illuminated by a laser. A
substrate binds reversibly to the enzyme and is converted
into a fluorescent product so that each catalytic transition
�i.e., the product formation� is followed by a burst of pho-
tons. The burst ends when the product dissociates and dif-
fuses out of the laser beam or is photobleached.

This experiment is described by the kinetic scheme in
Fig. 1�d� when fluorescence from the free product is negli-
gible. The data are a sequence of photons resulting from the
EP*→EP transition shown in red. Since each catalytic tran-
sition nearly coincides with the beginning of a new photon
burst, one can experimentally monitor the catalytic transi-
tions and obtain various distributions and correlation func-
tions associated with this transition from the data. These re-
sults are described by the kinetic scheme in Fig. 1�e� where
now the ES→EP transition is being monitored. For the sake
of simplicity, we now make the physically reasonable as-
sumption that the rate of dissociation of the enzyme-product
complex is much faster than substrate association, dissocia-
tion, or catalysis �i.e., k3→��. In this limit the statistics of
the catalytic transition can be obtained using the kinetic
scheme in Fig. 1�f�.

In this section we first consider the simplest models of
enzyme catalysis in the absence �see Fig. 1�f�� and presence
�see Fig. 1�g�� of conformational changes. We then consider
many conformational states and show how the general for-
malism in Sec. II can be simplified if conformational dynam-
ics is much slower than the substrate binding and catalytic
rates.

A. Two-state system: Ordinary Michaelis-Menten
kinetics

The simplest enzymatic reaction in the limit that the dis-
sociation of the enzyme-product complex is fast �k3→� in
Fig. 1�e�� is described by the kinetic scheme in Fig. 1�f�. The
binding rate is proportional to the substrate concentration �S�
�k1=k1

0�S��. We are interested in the statistics of the catalytic
transitions described by the rate constant k2. For the model in
Fig. 1�f� the matrix K in the basis �E ,ES� is

K = �− k1 k−1 + k2

k1 − �k−1 + k2�
� , �6.1�

and the matrix V is

V = �0 k2

0 0
� . �6.2�

The normalized steady-state concentrations are obtained by

solving Kpss=0,
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pss�E� =
k−1 + k2

k1 + k−1 + k2
,

�6.3�

pss�ES� =
k1

k1 + k−1 + k2
.

The mean number of catalytic turnovers per unit time,


n� = k2pss�ES� =
k2k1

0�S�
k1

0�S� + k−1 + k2
, �6.4�

has the Michaelis-Menten form, while the mean turnover
time has the Lineweaver-Burk form,


��0 = 1/
n� =
1

k2
+

1

�S�
k−1 + k2

k2k1
0 . �6.5�

For these K and V matrices, the equation which deter-
mines the generating function of P�N �T�, Eq. �2.13�, be-
comes

d

dt
fE = − k1fE + �k−1 + �k2�fES, �6.6a�

d

dt
fES = k1fE − �k−1 + k2�fES, �6.6b�

with the steady-state initial conditions fE�0 ���= pss�E� and
fES�0 ���= pss�ES�. Solving this in Laplace space, we get the
generating function for the distribution of the number of

transitions, �N=0
� �NP̂�N �s�= f̂E+ f̂ES. Expanding the generat-

ing function in powers of � and inverting the Laplace trans-
form, we find63

P�N�T� =
�1 − �2�NtNe−t

�2��NN!�8�t/

�2��N + t�IN−1/2��t�

+ �1 + �2�tIN+1/2��t�� , �6.7�

where k�k1+k−1+k2, t=kT /2, and �2=1−4
n� /k, In�z� are
modified Bessel functions of the first kind, and 
n� is the
average number of transitions per unit time given in Eq.
�6.4�.

The above distribution becomes Poissonian �see Eq.
�2.22�� in the fast relaxation limit when �k1+k−1+k2�T
1
and


n�/k =
k1k2

�k1 + k−1 + k2�2 � 1. �6.8�

The generating function for P�� ��� is also obtained by
solving Eq. �6.6� with f→g, but with initial conditions
gE�0 ���=1 and gES�0 ���=0 �see Eq. �2.29��. Solving this
equation in Laplace space, expanding the result in powers of

�, using ��=0
� ��P̂�s ���=k2ĝES�s ���, and inverting the

Laplace transform, we get

P����� =
�
k
n�

�!
� 
n��

�
��+1/2

e−k�/2I�+1/2��k�/2� . �6.9�

When �=0, this reduces to the biexponential time distribu-
tion obtained earlier.25,55 Nevertheless, the mean time be-

tween turnovers, 
��0=��P�� �0�d�, is given by Eq. �6.5� and
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has the Lineweaver-Burk form, as has been pointed out
previously.55 In the limit k�
1 and 
n� /k�1 when P�N �T�
reduces to a Poisson distribution, Eq. �6.9� becomes the
gamma distribution in Eq. �2.41�.

For this two-state system, the turnover times are uncor-
related, i.e., 
� j+1�1�0= 
��0

2. The correlation function of the
number of transitions is


n�t�n�0�� = 
n�2�1 − e−kt� . �6.10�

Note that for very short times 
n�t�n�0�� approaches zero.
This limit corresponds to the correlation of the number of
transitions in two consecutive bins. This correlation function
is zero because the time between two consecutive turnovers
is longer than the bin size. This is analogous to photon anti-
bunching in single-molecule fluorescence.6–8

Finally, we mention that the above results also describe
the statistics of photons emitted by a two-level system in the
classical limit. Comparing Fig. 1�f� with Fig. 1�a� it is clear
mean turnover time recently obtained by Kou et al.
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that when k2 is identified with the photon emission rate kD,
and k−1 with the nonradiative decay rate kNR, Eqs. �6.7� and
�6.9� give the distribution of photons in a time bin and the
distribution of the time between photons, when the detection
efficiency is unity. If the detection efficiency is �, one must
split the emission rate kD into parts corresponding to detected
and nondetected photons. Specifically, k2 must be identified
with the rate corresponding to detected photons �kD, and k−1

with kNR+ �1−��kD.65

B. Four-state system: Simplest model with
conformational changes

To generalize the above model to include conformational
dynamics, consider two enzyme states and two enzyme-
substrate states with different catalytic rates k21 and k22, as
shown in Fig. 1�g�. For this model the matrix K in the basis
�E ,E ,ES ,ES � is
1 2 1 2
K =�
− ��21 + k11� �12 k−11 + k21 0

�21 − ��12 + k12� 0 k−12 + k22

k11 0 − ��21 + k−11 + k21� �12

0 k12 �21 − ��12 + k−12 + k22�
� . �6.11�
The condition of detailed balance for the reversible binding
reaction is

k11�21k−12�12 = k12�12k−11�21. �6.12�

The matrix V is obtained by deleting all the elements of K,
except those off-diagonal ones that correspond to the moni-
tored transitions �k21 and k22�,

V =�
0 0 k21 0

0 0 0 k22

0 0 0 0

0 0 0 0
� . �6.13�

All quantities of interest can be obtained by using these ma-
trices in the general expressions presented in Sec. II. For
instance, the distribution of the time between consecutive
turnovers, or turnover time distribution for short, P�� �0�, is
the sum of four exponentials with the exponents equal to the
eigenvalues of K−V. The turnover number correlation func-
tion is the sum of three exponentials with exponents equal to
the nonzero eigenvalues of K. The mean time between con-
secutive turnovers is


��0
−1 = 
n� = k21pss�ES1� + k22pss�ES2� . �6.14�

Here pss�ES1� and pss�ES2� are the steady-state probabilities
of the enzyme-substrate complex, found by solving Kpss=0
and 1†pss=1. For a special case of �12=�21=� and �12

=�21=�, our formalism recovers the analytic result for the
55
Finally, consider the correlation function of the times
between consecutive turnovers, Eq. �2.39�. The 4�4 matrix
of escape probabilities � has only two nonzero eigenvalues.
One of them is equal to 1 so that as j→�, 
� j+1�1�0→ 
��0

2.
The other eigenvalue results in a “single exponential” decay
of this correlation function


� j+1�1�0 − 
��0
2 � z−j = exp�− j ln z� , �6.15�

where

z = �1 +
�21

k11
+

�12

k12
��1 +

�21

k21
+

�12

k22
� +

�21k−11

k11k21

+
�12k−12

k12k22
. �6.16�

These results can be readily generalized. When there are
M enzyme/enzyme-substrate conformations, 
� j+1�1�0− 
��0

2

is a sum of M −1 exponentials, while the distribution of turn-
over times P�� �0� is a sum of 2M exponentials, and the
turnover number correlation function 
n�t�n�0��− 
n�2 is a
sum of 2M −1 exponentials.

1. Slow conformational dynamics: Reduction to an
effective two-state system

We now consider the case when the binding and catalytic
reactions are much faster than the conformational changes.
In addition, we assume that the relaxation in each conforma-

2
tional state is fast, i.e., k1ik2i / �k1i+k−1i+k2i� �1, i=1,2. In
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this case the system can be partitioned into two subsystems,
�E1 ,ES1� and �E2 ,ES2� with slow intersubsystem and fast
intrasubsystem dynamics.

To reduce the four-state system to an effective two-state
one shown in Fig. 3, we start with Eq. �2.13�, with K and V
given by Eqs. �6.11� and �6.13�, and use the approximations
fEi

�t ���� pE
0�i�f i�t ��� and fESi

�t ���� pES
0 �i�f i�t ���, where

pE
0�i� and pES

0 �i� are the local steady-state probabilities of
states E and ES in conformation i �see Eq. �6.3��,

pE
0�i� =

k−1i + k2i

k1i + k−1i + k2i
,

�6.17�

pES
0 �i� =

k1i

k1i + k−1i + k2i
.

Then adding the equations for fEi
�t ��� and fESi

�t ��� first for
i=1 and then for i=2, we find that the generating function
becomes

�
N=0

�

�NP�N�T� = f1�T��� + f2�T��� . �6.18�

Here f1 and f2 satisfy

df1

dt
= − L1f1 + L2f2 − �1 − ��n1f1, �6.19a�

df2

dt
= L1f1 − L2f2 − �1 − ��n2f2, �6.19b�

where the mean number of transitions in the ith conforma-
tional state ni is given by

n1 = k21pES
0 �1� =

k21k11

k11 + k−11 + k21
,

�6.20�

n2 = k22pES
0 �2� =

k22k12

k12 + k−12 + k22
,

and the rate constants Li of the effective two-state system
turn out to be

L1 = �21pE
0�1� + �21pES

0 �1� ,

�6.21�
L2 = �12pE

0�2� + �12pES
0 �2� .

Equations �6.19� must be solved subject to the initial condi-
tions f i�0 ���= peq�i� �i=1,2� where peq�i� is the equilibrium

FIG. 3. Reduced description of an enzymatic reaction when the transitions
between two conformations are slow. The Li’s are effective interconversion
rates, and ni is the average number of catalytic transitions or turnovers in
state i per unit time.
population of state i,
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peq�1� =
L2

L1 + L2
, peq�2� =

L1

L1 + L2
. �6.22�

Note that the rate constants k1i=k1i
0 �S� and, hence, the equi-

librium populations depend on the substrate concentration
�S�. The above results are a special case of the general analy-
sis of slow dynamics discussed in Sec. IV �cf. Eqs. �6.19�
and �4.3��.

Thus we have reduced the four-state system in Fig. 1�g�
to an effective two-state system in Fig. 3. According to this
scheme, when state i undergoes a monitored transition with
rate ni, the system instantaneously returns to state i. This
simplification is valid when conformational changes are slow
and condition �6.8� holds for each conformational state.

All the results for the generating functions, distributions,
etc., can be obtained using the general formalism presented
in Sec. II when K is identified with L

L = �− L1 L2

L1 − L2
� , �6.23�

and V with the diagonal matrix N

N = �n1 0

0 n2
� . �6.24�

The mean time between consecutive turnovers is �see
Eq. �2.16��


��0
−1 = 
n� = n1peq�1� + n2peq�2� , �6.25�

and the turnover number correlation function is �see Eq.
�2.18��


n�t�n�0�� − 
n�2


n2� − 
n�2 = e−L0t, �6.26�

where L0=L1+L2 is the reciprocal of the conformational re-
laxation time. Note that the decay of this correlation function
depends on the substrate concentration. The same is true for
the turnover time correlation function which is


� j+1�1� − 
��0
2 =


n2� − 
n�2


n�2n1n2
�1 +

L0
n�
n1n2

�−j

, j � 1.

�6.27�

Comparing this with Eq. �6.26� one can see that if one intro-
duces an effective time teff= j
n� / �n1n2� �assuming L0
n�
�n1n2�, the turnover time correlation function and the turn-
over number correlation function decay in the same way in
this special case. This result has been obtained previously by
Yang and Cao.45 However, the turnover number correlation
function provides a more direct route to the conformational
relaxation time L0

−1 than does the correlation function of con-
secutive turnover times.

The distribution of time between consecutive turnovers,
P�� �0�, is the sum of two exponentials with the exponents
equal to the eigenvalues of L−N. When conformational
dynamics is slow compared to the mean time between turn-
overs, these exponents approach n1 and n2. Therefore, one
cannot get the information about slow conformational dy-
namics from the distribution of the time between consecutive

turnovers in this regime.
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Now consider the distribution of the number of turnovers
in a bin and the distribution of the time between turnovers.
One could find P�N �T� by solving Eq. �4.3� and expanding
the generating function in powers of �. Alternatively, we will
use the Mandel-type formula in Eq. �4.7�, which relates the
distribution of the number of turnovers to slow conforma-
tional fluctuations via the distribution PW�W �T�= 
	�W
−�0

Tn�t�dt��. Since we are dealing with a two-state system,
we can get this distribution by rescaling the analytic results
obtained by Berezhkovskii et al.37 �see Eq. �2.18� in Ref.
64�. In this way we find �n2�n1� that

P�N�T� = peq�1�e−L1T �n1T�N

N!
e−n1T

+ peq�2�e−L2T �n2T�N

N!
e−n2T

+ 

n1

n2

P�w,T�
�wT�N

N!
e−wTdw , �6.28�

where

P�w,T� =
2L0Tpeq�1�peq�2�

n2 − n1
e−zL0T�I0�y�

+ L0T�1 − z�I1�y�/y� . �6.29�

Here y=2L0T�peq�1�peq�2�x�1−x�, x= �w−n1� / �n2−n1�, and
z= peq�2��1−x�+ peq�1�x.

The first two terms in Eq. �6.28� are Poisson distribu-
tions weighted by the equilibrium probabilities of the confor-
mational states. These describe events that occur when the
system remains in state 1 or 2 during the bin time. The last
term is due to transitions between the conformations. For
large bins this term is dominant and eventually becomes a
delta function centered on the average number of turnovers
�P�N �T�→	�N− 
n�T� as T→��.

The distribution of the time between turnovers with an
arbitrary number of turnovers in between can also be ob-
tained analytically. When n2�n1 the result is

P����� = peq�1�e−L1�
n1

2


n�
�n1���

�!
e−n1�

+ peq�2�e−L2�
n2

2


n�
�n2���

�!
e−n2�

+
n1n2


n� 
n1

n2

P�w,��
�w���

�!
e−w�dw , �6.30�

where

P�w,�� =
2L0�peq�1�peq�2�

n2 − n1
e−zL0��I0�y� + L0TqI1�y�/y� .

�6.31�

Here x, y, and z are the same as above and q= peq�2�xn2 /n1

+ peq�1��1−x�n1 /n2. As in Eq. �6.28�, the first two terms cor-
respond to the system staying in the same conformational
state during time �. The third term is due to transitions be-
tween the conformational states. Note that P�� ���→	��

− 
���� as �→�.
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When conformational dynamics is very slow, the turn-
over number distribution, P�N �T�, is a superposition of Pois-
son distributions weighted by peq�i�, and the distribution of
the time between turnovers, P�� ���, is a superposition of
gamma distributions weighted by peq�i�ni / 
n�. Therefore,
when the bin size T or the number of intermediate turnovers
� are small, these distributions contain information only
about the equilibrium populations. The conformational dy-
namics is reflected in the turnover number distribution,
P�N �T�, when the bin size T is comparable to the conforma-
tion relaxation time, L0

−1. The turnover time distribution
P�� ��� is influenced by the conformational dynamics when
the number of turnovers � is comparable to n1n2 / �L0
n��.

Figure 4 shows the distribution of the turnover numbers
in a bin, P�N �T�, calculated using Eq. �6.28�. The distribu-
tion is plotted versus N / 
N�T=N / �
n�T� so that it does not
shift when the bin size is increased. The factor 
N�T in front
of P�N �T� keeps the distribution normalized. There are n1

=1 and n2=2 turnovers per millisecond in conformational

FIG. 4. Distribution of the number of turnovers, P�N �T�
N�T, as a function
of N / 
N�T=N / 
n�T. L0=L1+L2=10 s−1. n1=1 ms−1 and n2=2 ms−1. Left �
L1=8 s−1 and L2=2 s−1�, center �L1=L2=5 s−1�, and right �L1=2 ms−1 and
L2=8 ms−1� columns correspond to different equilibrium populations. Bin
size is T=0.01, 0.05, 0.1, 0.3, and 1 s.
states 1 and 2. The rate constants of the transitions between
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the two conformations are L1=8 s−1 and L2=2 s−1 for the
right column, L1=L2=5 s−1 for the center column, and L1

=2 s−1 and L2=8 s−1 for the left column. The conformational
relaxation time, L0

−1=0.1 s, is the same for all distributions.
When the bin size is much shorter than the conformational
relaxation time, L0T�1, the distribution is the superposition
of Poisson distributions �the first two terms in Eq. �6.28��.
When the bin size is so short that becomes comparable with
ni

−1, the Poissonian peaks overlap because of shot noise �see
the first row in Fig. 4�. As bin size increases, the Poissonian
peaks narrow and the distribution reflects the equilibrium
populations of the conformational states. When the bin size
becomes comparable to the conformational relaxation time, a
plateau appears between the peaks due to transitions between
the conformations. As the bin size increases further, the dis-
tribution eventually becomes a delta function centered at
N / 
N�T=1. The left and right columns show how the distri-
bution behaves when the conformational states are unequally
populated.

Figure 5 presents the distributions of the times between
turnovers, P�� ���, as a function of the dimensionless time
� / 
���=� / ���+1�
��0� obtained from Eq. �6.30�. The factor

��� in front of P�� ��� keeps the distribution normalized. The
first row shows that the distribution of the times between

FIG. 5. Distribution of the times between transitions, P�� ���
���, as a func-
tion of � / 
��� for �=0, 10, 100, 300, and 2000. Other parameters are the
same as in Fig. 4.
consecutive transitions ��=0� is structureless. As � increases,
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two peaks corresponding to the gamma distributions appear.
When � is large enough, the intermediate plateau appears
�due to the third term in Eq. �6.30��. This is the signature of
conformational dynamics. Finally, the distribution becomes a
delta function centered at � / 
���=1.

Because the gamma distributions are weighted by
peq�i�ni / 
n�, the left peak �corresponding to n2=2� is multi-
plied by a larger factor than the right one. Consequently, the
right peak is smaller than the left when the conformations are
equally populated �center column in Fig. 5� and can even
disappear when the population of the state corresponding to
the left peak is larger than that corresponding to the right
�left column�. In this case, the number of states and the equi-
librium populations are better determined from the turnover
number distribution �see Fig. 4�. However, the two peaks in
Fig. 5 are well resolved when the equilibrium population of
the state with a higher frequency of turnovers is smaller than
that with a lower frequency of turnovers �right column�. In
this case the peaks of P�� ��� are better resolved than those
of P�N �T� �the right columns in Figs. 4 and 5�. Thus the
distribution of the number of turnovers in a bin and the dis-
tribution of the time between turnovers contain complemen-
tary information.

C. Many conformational states: A continuum
description

It is straightforward to generalize the above formalism to
M discrete conformational states. However, it is preferable to
treat the continuum limit because the structure of the result-
ing theory is more transparent. In the continuum limit, the
discrete label i is replaced by a conformational coordinate
r �Ei→E�r�, ESi→ES�r��. We describe conformational dy-
namics in E and ES states as diffusion on one-dimensional
free-energy potentials UE�r� and UES�r�. The formalism can
be further generalized to handle “non-Markovian” conforma-
tional dynamics by using multidimensional conformational
coordinates. Although this is formally straightforward, for
the sake of simplicity we restrict ourselves to the one-
dimensional case.

The formalism developed in Sec. II can be used to
handle diffusive conformational dynamics of the E and ES
states by expressing K as

K = �LE − k1�r� k−1�r� + k2�r�

k1�r� LES − k−1�r� − k2�r� � , �6.32�

which is the generalization of Eq. �6.11�, and V as

V = �0 k2�r�
0 0

� , �6.33�

which is the generalization of Eq. �6.13�. Here LI is the
diffusion operator describing the dynamics of state I,

LI �
�

�r
DIe

−�UI
�

�r
e�UIpI, I = E,ES , �6.34�

where DI�r� is the diffusion coefficient of state I. It is
convenient to define the potentials UI�r� so that

�exp�−�UI�r��dr=1. The condition of detailed balance for
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reversible substrate binding relates the association and disso-
ciation rates by

k1�r�exp�− �UE�r��

k1�E

=
k−1�r�exp�− �UES�r��


k−1�ES
, �6.35�

where 
�¯��I���¯�exp�−�UI�dr, I=E ,ES.
The steady-state probabilities pss�E ,r� and pss�ES ,r� are

solutions of Kpss=0 with normalization ��pss�E ,r�
+ pss�ES ,r��dr=1,

�LE − k1�r��pss�E,r� + �k−1�r� + k2�r��pss�ES,r� = 0,

�6.36�
�LES − �k−1�r� + k2�r���pss�ES,r� + k1�r�pss�E,r� = 0.

The mean number of turnovers per unit time and the average
time between consecutive turnovers are related to the steady-
state probability of the ES state by


n� = 
��0
−1 =
 k2�r�pss�ES,r�dr . �6.37�

These depend on the substrate concentration because k1

=k1
0�S� and, in general, do not have the Michaelis-Menten or

Lineweaver-Burk forms.
All quantities of interest can be found by solving Eq.

�2.13� with the above K and V,

�

�t
fE = LEfE − k1fE + �k−1 + �k2�fES,

�6.38�
�

�t
fES = LESfES + k1fE − �k−1 + k2�fES.

Solving this set of partial differential equations with the
steady-state initial conditions fE�r ,0�= pss�E ,r� and
fES�r ,0�= pss�ES ,r�, we get the generating function of
P�N �T�

�
N=0

�

�NP�N�T� =
 �fE�r,T��� + fES�r,T����dr . �6.39�

Solving Eq. �6.38� with f →g and different initial conditions
gE�r ,0 ���= 
��0k2�r�pss�ES ,r� and gES�r ,0 ���=0, we get the
generating function of P�� ���,

�
�=0

�

��P����� =
 k2�r�gES�r,����dr . �6.40�

In practice Eq. �6.38� can be solved numerically by adapting
the procedure that was used in Ref. 66 to treat translational
rather than conformational diffusion.

Finally, the turnover number correlation function is re-
lated to gES at �=1 as


n�t�n�0�� = 
n� 
 k2�r�gES�r,t�1�dr . �6.41�

This can be rewritten in terms of the conditional probability
that the system is in state ES�r� at time t, given that it was in

0
E�r0� initially, G �ES ,r , t �E ,r0�, as
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n�t�n�0�� =
 
 k2�r�G0�ES,r,t�E,r0�k2�r0�

�pss�ES,r0�drdr0. �6.42�

Note that the turnover number correlation function is in gen-
eral not the autocorrelation function of k2�r� in the ES state
because it involves an “off-diagonal” Green’s function. How-
ever, as will be shown below, the two correlation functions
do become identical in certain special cases.

1. Slow conformational dynamics: Reduction to an
effective reaction-diffusion equation

The above formalism can be simplified when the confor-
mational dynamics in both the E and ES states are slow
compared with the binding and catalytic reactions and the
statistics of the catalytic transitions in each conformation is
Poissonian. This last condition is valid when �see Eq. �6.8��

k1�r�k2�r�
�k1�r� + k−1�r� + k2�r��2 � 1. �6.43�

This inequality holds for the enzyme-substrate system stud-
ied by English et al.32 As in Sec. VI B 1, we assume that
fE�r , t ���� pE

0�r�f�r , t ��� and fES�r , t ���� pES
0 �r�f�r , t ���,

where pE
0�r� and pES

0 �r� are the local steady-state probabilities
of each state for a fixed value of the conformational coordi-
nate,

pE
0�r� =

k−1�r� + k2�r�
k1�r� + k−1�r� + k2�r�

,

�6.44�

pES
0 �r� =

k1�r�
k1�r� + k−1�r� + k2�r�

.

Using these in Eq. �6.38� and adding the equations for fE and
fES, we find after some manipulations that the generating
function is

�
N=0

�

�NP�N�T� =
 f�r,T���dr , �6.45�

where f�r , t ��� satisfies

�

�t
f = Lf − �1 − ��n�r�f . �6.46�

Here n�r� is the average number of turnovers when the sys-
tem is frozen at r

n�r� = k2�r�pES
0 �r� =

k2�r�k1�r�
k1�r� + k−1�r� + k2�r�

. �6.47�

The effective diffusion operator turns out to be

Lf �
�

�r
D�r�e−�Uss

�

�r
e�Ussf , �6.48�

where the position-dependent diffusion coefficient is

D�r� = DEpE
0�r� + DESpES

0 �r� �6.49�

and the steady-state potential Uss�r� is given, to within a

constant, by the indefinite integral
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�Uss�r� = ln D�r�

+
 DEpE
0�r��UE��r� + DESpES

0 �r��UES� �r�
DEpE

0�r� + DESpES
0 �r�

dr .

�6.50�

Here the prime denotes the derivative with respect to r. Note
that both the diffusion coefficient and the steady-state poten-
tial depend on the substrate concentration since k1�r�=k1

0�r�
��S�. The above is a special case of the analysis of slow
dynamics discussed in Sec. IV �cf. Eqs. �4.5� and �6.46��.

Thus we have reduced the two-state reaction-diffusion
equation �Eq. �6.38�� to a single equation with an effective
“sink” term �Eq. �6.46��. In this description, the system dif-
fuses on a potential and undergoes a monitored transition
with a position-dependent rate n�r�. After each such transi-
tion originating from a state with conformational coordinate
r, the system immediately returns to this state and the pro-
cess begins over again. This reduction is justified when �1�
conformational dynamics is slower than binding and cataly-
sis and �2� the relaxation time of substrate binding is faster
than the time between consecutive turnover events.

The mean number of turnovers does not, in general, have
the Michaelis-Menten form and is given by


n� = 
n�r�� =
 n�r�pss�r�dr , �6.51�

where the steady-state conformational distribution is

pss�r� =
e−�Uss�r�

� e−�Uss�r�dr
. �6.52�

The turnover number correlation function is


n�t�n�0�� =
 n�r�G0�r,t�r0�n�r0�pss�r0�drdr0, �6.53�

where G0�r , t �r0� is the Green’s function corresponding to
the operator L �Lpss=0�. This is the analog of Eq. �2.18�.
The distribution of the time between consecutive turnover
events is

P���0� =
 
 n�r�G�r,��r0�n�r0�pss�r�drdr0/
n� , �6.54�

where G�r , t �r0� is the Green’s function corresponding to the
operator L−n�r�. This is the analog of Eq. �2.25�. When
conformational dynamics is much slower than the turnover
mean time, the distribution of the time between consecutive
turnovers, P�� �0�, approaches

P���0� =
� n2�r�e−n�r��−�Uss�r�dr

� n�r�e−�Uss�r�dr
. �6.55�

In general, this is a highly nonexponential function of time.
Since it is determined by the steady-state potential, it does
not contain information about the time scale of slow confor-
mational dynamics. In this regime, the decay of 
n�t�n�0�� is
a direct measure of this time scale. Thus 
n�t�n�0�� and
P�� �0� provide complementary information.
When UE�r�=UES�r��U�r�,
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e−�Uss�r� =
e−�U�r�

DEpE
0�r� + DESpES

0 �r�
. �6.56�

The mean number of turnovers can be found using Eq.
�6.51�. For example, when DE=DES,


n� =
 k2�r�k1
0�r��S�

k1
0�r��S� + k−1�r� + k2�r�

e−�U�r�dr , �6.57�

which does not have the Michaelis-Menten form. However,
when DE=0 or DES=0, the mean number does have the
Michaelis-Menten form. In particular, when DES=0,


n� =
� �k2�r�k1

0�r�/�k−1�r� + k2�r���e−�U�r�dr�S�
� �k1

0�r�/�k−1�r� + k2�r���e−�U�r�dr�S� + 1
. �6.58�

In the special case that all conformers are equally populated
�U=0� this result appears to be the continuum version of Eq.
�30� of Kou et al.55

Kou et al.55 have recently found that in the presence of
conformational changes the mean number of turnovers has
the Michaelis-Menten form for a variety of special cases �no-
tably, the DES=0 and DE=0 limits discussed above�. Here we
wish to point out that the Michaelis-Menten behavior arises
in a more general and experimentally relevant context not
considered by these authors. We have seen above that when
the diffusion coefficients in the E and ES states are slow but
equal, the average number of turnovers does not have the
Michaelis-Menten form �see Eq. �6.57��. However, if it is
further assumed that the catalytic rates are slower than the
relaxation rates for substrate binding �i.e., k2�r��k1�r�
+k−1�r��, then Eq. �6.57� becomes


n� =
 k2�r�k1
0�r��S�

k1
0�r��S� + k−1�r�

e−�U�r�dr . �6.59�

At first sight, this still does not appear to have the Michaelis-
Menten form. However, if we now exploit the detailed bal-
ance condition �6.35� �
k−1�k1�r�= 
k1�k−1�r� for UES�r�
=UE�r�=U�r��, the above result becomes


n� =

k2�
k1

0��S�

k1

0��S� + 
k−1�
, �6.60�

which has the Michaelis-Menten form.
This interesting result can be generalized to the case

when UES�UE. Specifically, when k2�r��k1�r�+k−1�r�, us-
ing the condition of detailed balance in Eq. �6.35�, it can be
shown that Eqs. �6.47�, �6.49�, and �6.50� reduce to

n�r� = k2�r�
pES
0 �e��Uss�r�−UES�r��,

D�r� = �DE
pE
0�e−�UE�r� + DES
pES

0 �e−�UES�r��e�Uss�r�,

e−�Uss�r� = 
pE
0�e−�UE�r� + 
pES

0 �e−�UES�r�, �6.61�
where
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pES
0 � = 1 − 
pE

0� =

k1

0�E�S�

k1

0�E�S� + 
k−1�ES

. �6.62�

Now 
n�, calculated from Eq. �6.51�, has the Michaelis-
Menten form involving conformationally averaged rate con-
stants,


n� =

k2�ES
k1

0�E�S�

k1

0�E�S� + 
k−1�ES

. �6.63�

In fact, when k−1
k2, this is valid for conformational fluc-
tuations on all time scales, as can be shown by using the
detailed balance condition, Eq. �6.35�, in Eqs. �6.36� and
�6.37�.

Let us consider when the turnover number correlation
function, Eq. �6.53�, and the distribution of the time between
consecutive turnovers, Eq. �6.54�, can be further simplified.
Since n�r� involves k2�r�, it is clear that the turnover number
correlation function 
n�t�n�0�� is related to the fluctuations of
the catalytic rate. It becomes identical to the correlation func-
tion of the catalytic rate in two limits: �A� �S�→� and �B�
UE�r�=UES�r�=U�r� for all �S�.

�A� Under saturating conditions, �S�→�, we have n�r�
=k2�r�, Uss�r�=UES�r�, and the turnover number correlation
function is


n�t�n�0�� = 
k2�r�t��k2�r�0���ES. �6.64�

The distribution of the time between consecutive turnovers
in this limit becomes

P���0� =
� k2�r�2e−k2�r��e−�UES�r�dr

� k2�r�e−�UES�r�dr
. �6.65�

�B� Setting UE�r�=UES�r�=U�r� in Eq. �6.61�, it follows
that the turnover number correlation function is now identi-
cal to the catalytic rate correlation function for any �S�,


n�t�n�0��

n�2 =


k2�r�t��k2�r�0���

k2�2 . �6.66�

The diffusion coefficient, however, depends on substrate
concentration, D=DE
pE

0�+DES
pES
0 �=DE+ �DES−DE�

�
n� / 
k2�. The potential U�r� does not. Therefore, the nor-
malized turnover number �intensity� correlation function for
different substrate concentrations can be superimposed if the
time is scaled by the above D. If they cannot be superim-
posed, the free-energy surfaces of E and ES states must dif-
fer. The distribution of the time between consecutive turn-
overs is

P���0� =

n�


k2�2 
 k2�r�2e−k2�r�
n��/
k2�−�U�r�dr , �6.67�

and thus the shape of this distribution at different substrate
concentrations is the same when expressed in terms of the
dimensionless time 
n��. In other words, the function
P�� / 
n� �0� / 
n� is independent of the substrate concentration.
If distributions at different substrate concentrations cannot be
superimposed in this way, the E and ES potentials must dif-
fer significantly.

In summary, when the catalytic, binding, and conforma-

tional rates are on the same time scale, the distributions and
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correlation functions are complex functions of the rate con-
stants. It is difficult to separate the contributions from differ-
ent sources of fluctuations. However, when there is a sepa-
ration of time scales, e.g., when conformational dynamics is
slower than the catalytic and binding reactions, the formal-
ism can be simplified. In this case the information about the
binding and catalytic transitions is contained in the mean
number of turnovers per unit time n�r� for a fixed conforma-
tional coordinate r. The distribution of the number of turn-
overs in a bin, P�N �T�, and the distribution of the time be-
tween turnovers, P�� ���, are influenced by conformational
dynamics only when the bin size T and the number of tran-
sitions � are sufficiently large. For example, the distribution
of the time between consecutive turnovers, P�� �0�, contains
information only about the equilibrium distribution of the
conformational states. The decay of the turnover number cor-
relation function, on the other hand, is a direct measure of
the conformation relaxation time.

We have shown that the mean number of turnovers has
the Michaelis-Menten form when the conformational
changes are slower than the catalytic rates which are in turn
slower than the relaxation rates for substrate binding. This is
a consequence of detailed balance for the substrate binding
reaction and is independent of the relative time scales of the
conformational changes in the E and ES states. When the
free-energy profiles in the E and ES states are the same, the
turnover number correlation function is identical to the auto-
correlation function of the catalytic rate for all substrate con-
centrations. Furthemore, this correlation function and the dis-
tribution of the time between consecutive turnovers at
different substrate concentrations can be superimposed by
appropriately scaling time.

Finally, we mention that if we exploit the analogy be-
tween fluorescence quenching �Fig. 1�a�� and enzyme cataly-
sis �Fig. 1�e��, the above results are applicable to fluores-
cence quenching in the presence of slow conformational
changes if n�r� is identified with

n�r� =
kDk1

0I

k1
0I + kD + kNR�r�

. �6.68�

In particular, in the limit of low intensities, the intensity cor-
relation function becomes


n�t�n�0��

n�2 =


k−1�r�t��k−1�r�0���

k−1�2 , �6.69�

where k�r�=kD+kNR�r� is the reciprocal of the lifetime of the
fluorophore when the system is frozen in conformation r.

VII. CONCLUDING REMARKS

In this paper we developed a unified formalism to char-
acterize the statistics of state-to-state transitions when the
dynamics is described by a multistate master equation or, in
the continuum limit, by a multidimensional reaction-
diffusion equation. This is not as restrictive as might appear
at first sight because a low-dimensional non-Markovian sys-
tem can always be described by a multidimensional Markov-

ian one. Thus the relationships we found between various
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distribution functions and those that explicitly involve corre-
lation functions are valid even when the dynamics is non-
Markovian.

In this paper we explicitly considered monitored transi-
tions of a single type, but the formalism can be almost im-
mediately generalized. We have employed such a generaliza-
tion to describe Förster resonance energy transfer,65 where
we were interested in the distribution of the number of donor
and acceptor photons. These are associated with transitions
of different types �see Fig. 1�c��. As another example, con-
sider the statistics of the residence times �or waiting or “on”
and “off” times� in a two-state non-Markovian system first
studied by Cao in the context of single-molecule enzymatic
reactions.44 Suppose a multistate kinetic scheme is parti-
tioned into a two-state scheme involving superstates 1 and 2.
Then the residence time in superstate 1 is just the time be-
tween consecutive 2→1 and 1→2 transitions. The formal-
ism can be generalized to handle such problems by introduc-
ing two counting parameters,65 �1 and �2, and replacing K
− �1−��V by K− �1−�1�V1− �1−�2�V2, where Vi is the ma-
trix containing the rate coefficients associated with the tran-
sitions of type i. Specifically, the generating function of the
probability of having N1 transitions of type 1 and N2 transi-
tions of type 2 during the time interval T is given by

�
N1,N2=0

�

�1
N1�2

N2P�N1,N2�T� = 1†e�K−�1−�1�V1−�1−�2�V2�Tpss,

�7.1�

which is the generalization of Eq. �2.14�. The time intervals
between transitions are characterized by the probability den-
sity Pij�� ��1 ,�2� of the time � between a transition of type j
and a transition of type i when there are �1 and �2 transitions
of types 1 and 2 in between. The generating function of this
distribution is given by

�
�1,�2=0

�

�1
�1�2

�2Pij����1,�2� = 1†Vie
�K−�1−�1�V1−�1−�2�V2��

�V jpss/1
†V jpss, �7.2�

which is the generalization of Eq. �2.30�.
The most natural application of this work is in the analy-

sis of photon trajectories generated when a system is con-
tinuously illuminated. When quantum effects are negligible,
the emission of a photon can be well described as a kinetic
transition between two states �i.e., using a two-state master
or rate equation�. However, in this paper, to illustrate the
wide range of applicability of our formalism, we considered
in detail the statistics of the catalytic transition in enzymatic
reactions. Our primary motivation was to present a compre-
hensive and unified framework for the analysis of a variety
of single-molecule spectroscopic experiments, and we hope
that our results will prove useful in this context.
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APPENDIX A: SOME USEFUL IDENTITIES

The Laplace transform of Eq. �2.3� is

sĜ − I = �K − V�Ĝ = Ĝ�K − V� . �A1�

By differentiating this with respect to s and setting s=0, we
have

�K − V�Ĝ�0� = Ĝ�0��K − V� = − I , �A2a�

lim
s→0

�K − V�
d

ds
Ĝ = lim

s→0

d

ds
Ĝ�K − V� = Ĝ�0� . �A2b�

Using 1†K=Kpss=0, these simplify to

1†VĜ�0� = 1†, �A3a�

Ĝ�0�Vpss = pss, �A3b�

and

lim
s→0

d

ds
1†VĜ = − 1†Ĝ�0� , �A4a�

lim
s→0

d

ds
ĜVpss = − Ĝ�0�pss. �A4b�

It also follows from Eqs. �A4a� and �A3b� that

lim
s→0

d

ds
1†VĜ�s�Vpss = − 1. �A5�

To obtain a corresponding identity for the second deriva-
tive, we first multiply Eq. �A1� by s and then use Eq. �A1� to

eliminate sĜ from the right hand side,

s2Ĝ − sI = �K − V��Ĝ�K − V� + I� .

Multiplying this by 1† on the right and pss on the left and
using 1†K=Kpss=0, we get

s21†Ĝpss − s = 1†VĜVpss + 1†Vpss.

Differentiating with respect to s twice and setting s=0 give

lim
s→0

1†V
d2

ds2Ĝ�s�Vpss = 21†Ĝ�0�Pss. �A6�

APPENDIX B: MOMENTS OF THE TIME BETWEEN
TRANSITIONS

To derive the expression for the mean time between suc-
cessive events 
���, Eq. �2.32�, we use the Laplace transform
of the expression for P�� ���, Eq. �2.27�, in Eq. �2.31� and get


��� = − lim
s→0

�
i=0

�

1†�VĜ�0��i d

ds
VĜ�VĜ�0���−iVpss/1

†Vpss.

�B1�
Using Eqs. �A3� and �A5� from Appendix A, one gets
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��� = �� + 1�/1†Vpss, �B2�

from which Eq. �2.33� for 
��0 and Eq. �2.32� for 
��� follow
immediately.

To derive the expression for the mean square time 
�2��,
Eq. �2.34�, we use the Laplace transform of P�� ���, Eq.
�2.27�, and the definition of 
��0, Eq. �2.33�, in Eq. �2.31� and
get


�2��


��0
= lim

s→0
��

i=0

�

1†�VĜ�0��i d2

ds2VĜ�VĜ�0���−iVpss

+ 2�
j=0

�−1

�
i=0

�−1−j

1†�VĜ�0��idVĜ

ds
�VĜ�0�� j dVĜ

ds

��VĜ�0���−1−i−jVpss� . �B3�

The first term is simplified using Eqs. �A3� and �A6� and
becomes

2�� + 1�1†Ĝ�0�pss = 2�� + 1��irr
† pss,

where �irr is defined in Eq. �2.35�. The second term is sim-
plified using Eqs. �A3� and �A4�,

2�
k=0

�−1

�� − k�1†Ĝ�0��VĜ�0��k+1pss

= 2�
k=0

�−1

�� − k��irr
† �k+1pss,

where � is defined in Eq. �2.36�. Replacing the summation
variable by j=k+1 in the second term and combining the
two terms, we get Eq. �2.34� for the mean square time 
�2��.

APPENDIX C: REDUCTION TO RENEWAL
THEORY

To derive Eq. �3.4� for the generating function, we start
with the solution of Eq. �2.13� in Laplace space,

f̂ = �sI − K + �1 − ��V�−1pss. �C1�

Since V is separable, we can use the Sherman-Morrison
formula72 to invert the matrix

f̂ = �Ĝ0�s� −
�1 − ��Ĝ0�s�uv†Ĝ0�s�

1 + �1 − ��v†Ĝ0u
�pss, �C2�

where

Ĝ0�s� = �sI − K�−1. �C3�

The next step is to relate v†Ĝ0u to ���� defined in Eq. �3.2�.
To do this we solve Eq. �2.3� for G in Laplace domain and
invert it as above,

Ĝ = Ĝ0 −
Ĝ0uv†Ĝ0

1 + v†Ĝ0u
. �C4�
From this it follows that
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�̂ = v†Ĝ�s�u =
v†Ĝ0u

1 + v†Ĝ0u
, �C5�

or

v†Ĝ0u =
�̂

1 − �̂
. �C6�

Multiplying Eq. �C2� on the left by 1† and using Eqs. �C6�
and �3.5� and Ĝ0�s�pss=pss /s, 1†Ĝ0�s�=1† /s, we get the re-
newal theory result, Eq. �3.4�.

To derive Eq. �3.7�, we note that when V is separable,

the escape probability �=VĜ�0� satisfies

� j = � . �C7�

Using this in Eq. �2.39� for 
� j+1�1�0, we get


� j+1�1�0 = 
��01†Ĝ�0�uv†Ĝ�0�pss. �C8�

Then, using identities Eq. �A3� for the separable V, we get
Eq. �3.7�.
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